
OBJECT ORIENTED PROGRAMMING SYSTEMS
JAVA

Object-Oriented Programming is a methodology or paradigm to design a
program using classes and objects. It simplifies the software development
andmaintenance by providing some concepts definedbelow :

Class is a user-defineddata typewhich defines its properties and its
functions. Class is the only logical representation of the data. For
example, Humanbeing is a class. The body parts of a humanbeing are its
properties, and the actions performedby the body parts are knownas
functions. The class does not occupy anymemory space till the time an
object is instantiated.

Object is a run-time entity. It is an instance of the class. An object can
represent a person, place or any other item. Anobject can operate on
both datamembers andmember functions.

Example 1:
class Student {

String name;

int age;

public void getInfo() {

System.out.println("The name of this Student is " + this.name);

System.out.println("The age of this Student is " + this.age);

}

}

public class OOPS {

public static void main(String args[]) {

Student s1 = new Student();

s1.name = "Aman";

s1.age = 24;

s1.getInfo();

Student s2 = new Student();



s2.name = "Shradha";

s2.age = 22;

s2.getInfo();

}

}

Example 2:
class Pen {

String color;

public void printColor() {
System.out.println("The color of this Pen is " + this.color);

}
}

public class OOPS {
public static void main(String args[]) {

Pen p1 = new Pen();
p1.color = blue;

Pen p2 = new Pen();
p2.color = black;

Pen p3 = new Pen();
p3.color = red;

p1.printColor();
p2.printColor();
p3.printColor();

}
}

Note :When anobject is createdusing a newkeyword, then space is
allocated for the variable in a heap, and the starting address is stored in
the stackmemory.

‘this’ keyword : ‘this’ keyword in Java that refers to the current
instance of the class. InOOPS it is used to:

1. pass the current object as a parameter to another
method

2. refer to the current class instance variable



Constructor : Constructor is a specialmethodwhich is invoked
automatically at the timeof object creation. It is used to initialize the data
members of newobjects generally.

● Constructors have the samenameas class or structure.
● Constructors don’t have a return type. (Not even void)
● Constructors are only called once, at object creation.

There can be three typesof constructors in Java.

1. Non-Parameterized constructor : A constructorwhich has no
argument is knownas non-parameterized constructor(or no-argument
constructor). It is invoked at the timeof creating an object. If we don’t
create one then it is created by default by Java.
class Student {

String name;
int age;

Student() {
System.out.println("Constructor called");

}
}

2. Parameterized constructor : Constructorwhich has parameters is called a
parameterized constructor. It is used to provide

different values to distinct objects.
class Student {

String name;

int age;

Student(String name, int age) {

this.name = name;

this.age = age;

}

}

3. CopyConstructor : A Copy constructor is anoverloaded

constructor used to declare and initialize an object fromanother



object. There is only a user defined copy constructor in Java(C++has a
default one too).
class Student {

String name;

int age;

Student(Student s2) {

this.name = s2.name;

this.age = s2.age;

}

}

Note : Unlike languages like C++, Java has noDestructor. Instead, Java
has an efficient garbage collector that deallocatesmemory
automatically.



Polymorphism

Polymorphism is the ability to present the same interface for differing
underlying forms (data types).With polymorphism, each of these classes
will have different underlying data. Precisely, Polymeans ‘many’ and
morphismmeans ‘forms’.

Types of Polymorphism IMP

1. Compile TimePolymorphism (Static)
2. RuntimePolymorphism (Dynamic)

Let’s understand themoneby one :

Compile TimePolymorphism : The polymorphismwhich is implemented at
the compile time is knownas compile-timepolymorphism. Example -
MethodOverloading

MethodOverloading :Method overloading is a techniquewhich allows you
to havemore than one functionwith the same function namebutwith
different functionality.Method overloading canbe possible on the
following basis:

1. The type of the parameters passed to the function.

2. The number of parameters passed to the function.

class Student {

String name;

int age;

public void displayInfo(String name) {

System.out.println(name);

}

public void displayInfo(int age) {

System.out.println(age);

}

public void displayInfo(String name, int age) {



System.out.println(name);

System.out.println(age);

}

}

RuntimePolymorphism : Runtimepolymorphism is also knownasdynamic
polymorphism. Function overriding is an example of runtime
polymorphism. Function overridingmeanswhen the child class contains
themethodwhich is already present in the parent class. Hence, the child
class overrides themethodof theparent class. In case of function
overriding, parent and child classes both contain the same functionwith a
different definition. The call to the function is determined at runtime is
knownas runtimepolymorphism.

class Shape {

public void area() {

System.out.println("Displays Area of Shape");

}

}

class Triangle extends Shape {

public void area(int h, int b) {

System.out.println((1/2)*b*h);

}

}

class Circle extends Shape {

public void area(int r) {

System.out.println((3.14)*r*r);

}

}

Inheritance

Inheritance is a process inwhich one object acquires all the properties and



behaviors of its parent object automatically. In such away, you can reuse,
extendormodify the attributes andbehaviorswhich are defined in other
classes.
In Java, the class which inherits the members of another class is called
derived class and the class whose members are inherited is called base class.
The derived class is the specialized class for the base class.

Types of Inheritance :
1. Single inheritance :Whenone class inherits another class, it is known

as single level inheritance
class Shape {

public void area() {

System.out.println("Displays Area of Shape");

}

}

class Triangle extends Shape {

public void area(int h, int b) {

System.out.println((1/2)*b*h);

}

}

2.Hierarchical inheritance : Hierarchical inheritance is defined as the
process of derivingmore than one class fromabase class.
class Shape {

public void area() {

System.out.println("Displays Area of Shape");

}

}

class Triangle extends Shape {

public void area(int h, int b) {

System.out.println((1/2)*b*h);

}

}

class Circle extends Shape {

public void area(int r) {

System.out.println((3.14)*r*r);

}



}

3.Multilevel inheritance :Multilevel inheritance is a process of deriving a
class fromanother derived class.

class Shape {

public void area() {

System.out.println("Displays Area of Shape");

}

}

class Triangle extends Shape {

public void area(int h, int b) {

System.out.println((1/2)*b*h);

}

}

class EquilateralTriangle extends Triangle {

int side;

}

4.Hybrid inheritance : Hybrid inheritance is a combination of
simple,multiple inheritance andhierarchical inheritance.

Package in Java



Package is a group of similar types of classes, interfaces and sub-packages.
Packages can be built-in or user defined.

Built-in packages - java, util, io etc.

import java.util.Scanner;

import java.io.IOException;

AccessModifiers in Java

➢ Private: The access level of a private modifier is only within the class. It cannot
be accessed from outside the class.

➢ Default: The access level of a default modifier is only within the package. It
cannot be accessed from outside the package. If you do not specify any access
level, it will be the default.

➢ Protected: The access level of a protected modifier is within the package and
outside the package through child class. If you do not make the child class, it
cannot be accessed from outside the package.

➢ Public: The access level of a public modifier is everywhere. It can be accessed
from within the class, outside the class, within the package and outside the
package.

package newpackage;

class Account {

public String name;

protected String email;

private String password;

public void setPassword(String password) {

this.password = password;

}



}

public class Sample {

public static void main(String args[]) {

Account a1 = new Account();

a1.name = "Apna College";

a1.setPassword("abcd");

a1.email = "hello@apnacollege.com";

}

}

Encapsulation

Encapsulation is the process of combining data and functions into a single unit
called class. In Encapsulation, the data is not accessed directly; it is accessed
through the functions present inside the class. In simpler words, attributes of the
class are kept private and public getter and setter methods are provided to
manipulate these attributes. Thus, encapsulation makes the concept of data
hiding possible.(Data hiding: a language feature to restrict access to members of
an object, reducing the negative effect due to dependencies. e.g. "protected",
"private" feature in Java).

Abstraction



We try to obtain an abstract view, model or structure of a real life problem, and
reduce its unnecessary details. With definition of properties of problems,
including the data which are affected and the operations which are identified,
the model abstracted from problems can be a standard solution to this type of
problems. It is an efficient way since there are nebulous real-life problems that
have similar properties.

In simple terms, it is hiding the unnecessary details & showing only the
essential parts/functionalities to the user.

Data binding : Data binding is a process of binding the application UI and business

logic. Any change made in the business logic will reflect directly to the application

UI.

Abstraction is achieved in 2 ways :

- Abstract class

- Interfaces (Pure Abstraction)

1. Abstract Class

● An abstract class must be declared with an abstract keyword.

● It can have abstract and non-abstract methods.

● It cannot be instantiated.

● It can have constructors and static methods also.

● It can have final methods which will force the subclass not to change the body of

the method.

abstract class Animal {

abstract void walk();

void breathe() {



System.out.println("This animal breathes air");

}

Animal() {

System.out.println("You are about to create an Animal.");

}

}

class Horse extends Animal {

Horse() {

System.out.println("Wow, you have created a Horse!");

}

void walk() {

System.out.println("Horse walks on 4 legs");

}

}

class Chicken extends Animal {

Chicken() {

System.out.println("Wow, you have created a Chicken!");

}

void walk() {

System.out.println("Chicken walks on 2 legs");

}

}

public class OOPS {

public static void main(String args[]) {

Horse horse = new Horse();

horse.walk();

horse.breathe();

}

}

2. Interfaces



● All the fields in interfaces are public, static and final by default.

● All methods are public & abstract by default.

● A class that implements an interface must implement all the methods declared

in the interface.

● Interfaces support the functionality of multiple inheritance.

interface Animal {

void walk();

}

class Horse implements Animal {

public void walk() {

System.out.println("Horse walks on 4 legs");

}

}

class Chicken implements Animal {

public void walk() {

System.out.println("Chicken walks on 2 legs");

}

}



public class OOPS {

public static void main(String args[]) {

Horse horse = new Horse();

horse.walk();

}

}

Static Keyword

Static can be :

1. Variable (also known as a class variable)

2. Method (also known as a class method)

3. Block

4. Nested class

class Student {

static String school;

String name;

}

public class OOPS {

public static void main(String args[]) {



Student.school = "JMV";

Student s1 = new Student();

Student s2 = new Student();

s1.name = "Meena";

s2.name = "Beena";

System.out.println(s1.school);

System.out.println(s2.school);

}

}


