OBJECT ORIENTED PROGRAMMING SYSTEMS
JAVA

Object-Oriented Programming is a methodology or paradigm to design a
program using classes and objects. It simplifies the software development
and maintenance by providing some concepts defined below :

Class is a user-defined data type which defines its properties and its
functions. Class is the only logical representation of the data. For
example, Human being is a class. The body parts of a human being are its
properties, and the actions performed by the body parts are known as
functions. The class does not occupy any memory space till the time an
objectisinstantiated.

Objectisarun-time entity. Itis an instance of the class. An object can
represent a person, place or any other item. An object can operate on
both data members and member functions.

Example1:

Student {

String name;

int age;

void getInfo () {
em.out.println ("The name of this Student is

System.out.println ("The age of this Student is

void main(String args[]) {
Student sl = new Student();

sl.name = "Aman";

sl.age

sl.getInfo();

Student s2 new Student () ;

Pen {
String color;

1 printColor () {
.out.println("The colo

pl.color

Pen p2 =r

p2.color

Pen p3 =1
p3.color

pl.printColor () ;
p2.printColor () ;
p3.printColor ()

’
’

Note:

‘this’ keyword : ‘this’ keyword in Java that refers to the current
instance of the class. In OOPS it is used to:

1. passthecurrent object as a parameter toanother
method
2. refertothe currentclassinstance variable

Constructor : Constructor is a special method which is invoked
automatically at the time of object creation. It is used to initialize the data
members of new objects generally.

e Constructors have the same name as class or structure.

e Constructors don’t have areturn type. (Not even void)

e Constructors are only called once, at object creation.

There can be three types of constructors in Java.

1. Non-Parameterized constructor : A constructor which has no

argument is known as non-parameterized constructor(or no-argument
constructor). It is invoked at the time of creating an object. If we don’t

create one thenitis created by default by Java.

String name;
int age;

Student () {
System.out.println ("Constructor

2. Parameterized constructor : Constructor which has parameters is called a

parameterized constructor. It is used to provide

different values to distinct objects.

Student {
String name;

int age;

Student (String name, int age) {

.name = name;

.age = age;

3. Copy Constructor : A Copy constructor is an overloaded

constructor used to declare and initialize an object from another

object. There is only a user defined copy constructorin Java(C++ has a

default one too).
Student {

String name;

int age;

Student (Student s2) {
.name = S2.name;

.age

Note:

Polymorphism

Polymorphism is the ability to present the same interface for differing
underlying forms (data types). With polymorphism, each of these classes
will have different underlying data. Precisely, Poly means ‘many’ and
morphism means ‘forms’.

Types of Polymorphism IMP

1. Compile Time Polymorphism (Static)
2. Runtime Polymorphism (Dynamic)

Let’s understand them one by one:

Compile Time Polymorphism : The polymorphism which isimplemented at
the compile time is known as compile-time polymorphism. Example -
Method Overloading

Method Overloading : Method overloading is a technique which allows you
to have more than one function with the same function name but with
different functionality. Method overloading can be possible on the
following basis:

1. The type of the parameters passed to the function.

2. The number of parameters passed to the function.

Student {
String name;

int age;
oid displayInfo (String name) {

m.out.println (name) ;

void displayInfo (int age) {

.out.println (age) ;

void displayInfo (String name, int age)

System.out.println (name) ;

System.out.println (age) ;

Runtime Polymorphism : Runtime polymorphism is also known as dynamic
polymorphism. Function overriding is an example of runtime
polymorphism. Function overriding means when the child class contains
the method which is already present in the parent class. Hence, the child
class overrides the method of the parent class. In case of function
overriding, parent and child classes both contain the same function with a
different definition. The call to the function is determined at runtime is
known as runtime polymorphism.

oid area() {

ut.println ("Di

Shape {
d area(int h, int b) {

.out.println((1/2)*b*h) ;

Shape {

oid area(int r) {

System.out.println((3.14)*r*r);

Inheritance

Inheritance is a process in which one object acquires all the properties and

behaviors of its parent object automatically. In such away, you canreuse,
extend or modify the attributes and behaviors which are defined in other
classes.

In Java, the class which inherits the members of another class is called

derived class and the class whose members are inherited is called base class.
The derived class is the specialized class for the base class.

Types of Inheritance:
1.Single inheritance : When one class inherits another class, it is known
as single level inheritance

id area () {

ut.println ("Dist

Shape {

id area(int h, int b) {

m.out.println((1/2)*b*h) ;

Triangle Shape {
void area (int h, int b) {

tem.out.println((1/2) *b*h) ;

Sleele Shape {
void area(int r) {

System.out.println((3.14)*r*r);

3. Multilevel inheritance : Multilevel inheritance is a process of deriving a
class from another derived class.

oid area() {

m.out.println ("Di:

Shape {

id area(int h, int b) {

m.out.println ((1/2)*b*h) ;

EquilateralTriangle Triangle {

int side;

4. Hybrid inheritance : Hybrid inheritance is acombination of
simple, multiple inheritance and hierarchical inheritance.

Packagein Java

Package is a group of similar types of classes, interfaces and sub-packages.
Packages can be built-in or user defined.

Built-in packages - java, util, io etc.

java.util.Scanner;

Access Modifiersin Java

> Private: The access level of a private modifier is only within the class. It cannot
be accessed from outside the class.

> Default: The access level of a default modifier is only within the package. It
cannot be accessed from outside the package. If you do not specify any access
level, it will be the default.

> Protected: The access level of a protected modifier is within the package and
outside the package through child class. If you do not make the child class, it
cannot be accessed from outside the package.

> Public: The access level of a public modifier is everywhere. It can be accessed
from within the class, outside the class, within the package and outside the
package.

String name;
String email;

String password;

void setPassword(String password) ({

.password = password;

Sample {

void main (String args([]) {

Account al = new Account();
al.name = "Apna Col
al.setPassword (

al.email = "hello@a

Encapsulation

Encapsulation is the process of combining data and functions into a single unit
called class. In Encapsulation, the data is not accessed directly; it is accessed
through the functions present inside the class. In simpler words, attributes of the
class are kept private and public getter and setter methods are provided to
manipulate these attributes. Thus, encapsulation makes the concept of data
hiding possible.(Data hiding: a language feature to restrict access to members of
an object, reducing the negative effect due to dependencies. e.g. "protected’,
"private” feature in Java).

Abstraction

We try to obtain an abstract view, model or structure of a real life problem, and
reduce its unnecessary details. With definition of properties of problems,
including the data which are affected and the operations which are identified,
the model abstracted from problems can be a standard solution to this type of
problems. It is an efficient way since there are nebulous real-life problems that
have similar properties.

In simple terms, it is hiding the unnecessary details & showing only the
essential parts/functionalities to the user.

Data binding : Data binding is a process of binding the application Ul and business
logic. Any change made in the business logic will reflect directly to the application
Ul

Abstraction is achieved in 2 ways :

Abstract class

- Interfaces (Pure Abstraction)

1. Abstract Class

e An abstract class must be declared with an abstract keyword.
e |t can have abstract and non-abstract methods.

e [t cannot be instantiated.

e |t can have constructors and static methods also.

e |t can have final methods which will force the subclass not to change the body of

the method.

Animal {

void walk() ;

void breathe () {

em.out.println ("This animal brec

Animal () {

em.out.println ("You

out.println ("Hor

out.println ("Wc

{

em.out.println ("C

d main (String args([]) {
Horse horse = Horse () ;
horse.walk();

horse.breathe () ;

2. Interfaces

All the fields in interfaces are public, static and final by default.
All methods are public & abstract by default.

A class that implements an interface must implement all the methods declared

in the interface.

Interfaces support the functionality of multiple inheritance.

void walk() {

tem.out.println ("Horse wa

void walk() {

tem.out.println ("Ch

| main (String args|[])

Horse horse new Horse();

horse.walk () ;

Static Keyword

Static can be :
1. Variable (also known as a class variable)
2. Method (also known as a class method)

3. Block

4. Nested class

void main (String args|[])

{

{

= "JMV";
Student () ;

Student () ;

.name = "Meena";

.name = "Be

tem.out.println(sl.school);

tem.out.println (s2.school) ;

