
Java - Introduction to Programming
Lecture 8

Time & Space Complexity

Time complexity of an algorithm quantifies the amount of time taken by an
algorithm to run as a function of the length of the input.

Types of notations
1. O-notation: It is used to denote asymptotic upper bound. For a given
function g(n), we denote it by O(g(n)). Pronounced as “big-oh of g of n”. It
is also known as worst case time complexity as it denotes the upper
bound in which the algorithm terminates.
2. Ω-notation: It is used to denote asymptotic lower bound. For a given
function g(n), we denote it by Ω(g(n)). Pronounced as “big-omega of g of
n”. It is also known as best case time complexity as it denotes the lower
bound in which the algorithm terminates.
3. 𝚯-notation: It is used to denote the average time of a program.

Examples :

Apna College



Linear Time Complexity. O(n)

Comparison of functions on the basis of time complexity

It follows the following order in case of time complexity:

O(n
n
) > O(n!) > O(n

3
) > O(n

2) > O(n.log(n)) > O(n.log(log(n))) > O(n) > O(sqrt(n)) > O(log(n)) > O(1)

Note: Reverse is the order for better performance of a code with corresponding
time complexity, i.e. a program with less time complexity is more efficient.

Space Complexity
Space complexity of an algorithm quantifies the amount of time taken
by a program to run as a function of length of the input. It is directly
proportional to the largest memory your program acquires at any
instance during run time.
For example: int consumes 4 bytes of memory.

Apna College


